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In determining the angle of the zone of wave disturbances of internal ship waves from 
the amplitude characteristics difficulties arise in finding the boundary of this zone [I, 
2]. In this paper an attempt is made to fix the boundary of this region based on the lines 
of the crests and troughs of the wave disturbance in the wake behind a moving source. 

In the case of surface ship waves the lines of constant phase have a turning point. In 
addition, one family of smooth curves corresponds to the long-wavelength part of the spectrum 
of disturbances (transverse waves) while another family corresponds to short-wavelength dis- 
turbances (longitudinal waves) [3]. The straight line passing through the turning point of 
the lines of constant phase makes with the axis of motion of the source an angle equal to 
one-half the Kelvin angle. The efficiency of excitation of one or another section of the 
spectrum of disturbances is determined by the ratio of the characteristic horizontal size 
of the source and the maximum length or the value of the standard Froude number. 

Separate sections of the spectrum of internal ship waves in a three-layer liquid with 
a stratified middle layer were excited by varying the depth of a uniformly moving source. 
This corresponds to changing the characteristic horizontal size of the disturbance in the 
stratified layer above a moving source, which is valid for surface ship waves [4]. 

i. Theoretical Analysis. We shall write the equations for finding the vertical com- 
ponent of the velocity of the disturbances in a linear approximation, using the Boussinesq 
approximation, in dimensionless variables [3]: 

A w ~ = O ,  Am 3 = 0 ,  + . Ah w ~ = O ,  

(1.1) d a ~ 9 s a 2 ' 9 2 a 2 0 2 
d-T=o-T+~, A=ox---~-+o-~+ ~ ,  Ah=--+  Ox 2 ~yZ * 

Here the x axis is oriented along the incident flow, moving with a constant velocity U 
(U > 0) (the origin of the coordinate system is placed on the undisturbed bottom boundary 
of the stratified layer); the z axis is directed vertically upwards, opposite to the direc- 
tion of gravity; w is the vertical component of the velocity vector; Fr = U/(NH) is the 
internal Froude number of the middle layer; and, H = const is the height of the undisturbed 
middle layer. We shall study a three-layer model of a liquid with a continuous density dis- 
tribution and nonzero density gradient in the middle layer (N = const is the Brunt--Vaisala 
frequency of the middle layer). The height of the stratified layer H is taken as the linear 
scale, the ratio H/U is taken as the time scale, and the velocity of the incident flow U is 
taken as the velocity scale. All quantities referring to the top, middle, and bottom layers 
are denoted by the indices I, 2, and 3, respectively. 

The normal component of the velocity and the pressure must be continuous at the boun- 
daries of the layers. For the vertical velocity we have the condition 

#m 1 Ow.~ 
Wl = U~2' Oz d; at Z = 1; (1.2) 

at g == 0, W 2 ~ 1/);~, r dZ 

r e q u i r i n g  t h a t  t h e  s o l u t i o n s  i n  t h e  t o p  a n d  b o t t o m  l a y e r s  r e m a i n  b o u n d e d  i n  t h e  l i m i t  

We write out the dispersion relation for this problem: 
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t ~ z = ~ ,  a=(k~+kD '/~, t:=k~ 1 (1.3) 
l"r z (l~ -- kl)~ 

( k ,  and k2 a r e  t h e  c o o r d i n a t e s  o f  t h e  wave v e c t o r  and  ~ i s  t he  f r e q u e n c y  [5,  6 ] ) .  The d i s -  
p e r s i o n  r e l a t i o n  c o n s i s t s  o f  a d e n u m e r a b l e  number  of  b r a n c h e s  ~ = ~n ( k , ,  k2 ,  F r ) ,  n = 0 ,  1 ,  
2 ,  . . .  . 

From ( ] . .3 )  we can  f i n d  t h e  g r o u p  v e l o c i t y  v e c t o r  Y [ " ) :  / ~2'~ ~$~"~ gr [ Ok, ' -~I' which indicates 

the direction in which waves with frequency ~ and wave number k exist at large distances 
from the source of the disturbances for a wave system with number n. The lines of constant 
phase kx = A = const are given by the parametric expression x/A = v(n)/kV (n). Here x = 

gr gr 

{x, y} and the wave vector k satisfies the dispersion relation for a fixed frequency ~ [3]. 

We shall write the components of the group-velocity vector in the stationary case 

(~ = 0) in the form 

u l ~  . . . .  ~ -~  , k ' + 2 k ) ] ,  vi r= l + k L, L : - -  k ,Z . / [k  (l,, + 

whence  we f i n d  o n e - h a l f  t h e  a n g l e  w i t h i n  w h i c h  t h e  wave d i s t u r b a n c e s  a r e  c o n c e n t r a t e d  f o r  

t h e  wave s y s t e m  w i t h  number  n :  0 , , =  max arctan I~--~{ The l i n e s  o f  c o n s t a n t  p h a s e  f o r  t h e  

z e r o t h  mode (n  = O) a s  w e l l  a s  f o r  wave s y s t e m s  w i t h  n u m b e r s  n (n 2 1) u n d e r  t h e  c o n d i t i o n  
n v F r  < 1 h a v e  a b r e a k  and  a r e  q u a l i t a t i v e l y  s i m i l a r  t o  t h e  l i n e s  of  c o n s t a n t  p h a s e  of  s u r -  
f a c e  s h i p  w a v e s .  At t h e  p o i n t  of  t h e  b r e a k  o f  a l i n e  of  c o n s t a n t  p h a s e  t h e  v a l u e  o f  t h e  
wave vector corresponds to the point of inflection of the dispersion curve in the k~, k2 
plane. For wave systems with number n, under the condition n~Fr > i, the dispersion curves 
do not contain points of inflection and the lines of constant phase are curves convex down- 

wards and a sloping asymptote. 

2. Experimental Results. The experimental studies of the phase structure of internal 
waves in a three-layer model were performed in a 1.0 • 0.35 • 0.25 m laboratory basin. The 
linear stratification of the middle layer of liquid was obtained by continuously injecting 
into the basin a water solution of sodium chloride with variable concentration. The densi- 
ties of the uniform layers of liquid equalled the densities of the liquid at the top and 

bottom boundaries of the stratified layer. 

~le stratified layer was 4-5 cm high and the uniform layers were 6-7 cm high. Pre- 
liminary experiments established that increasing the vertical size of the uniform layers up 
to 15 cm has virtually no effect on the observed phase patterns. The experiments were per- 
formed immediately after the basin was filled, which made it possible to neglect the effect 
of the diffusion of salt on the boundaries of the stratified layer. The vertical distribu- 
tion of the density of the liquid was measured with the help of an electric conductivity 
meter. A more accurate value of the Brunt--V~is~l~ frequency for the middle layer was deter- 
mined based on the density distribution obtained [6]. The working values of the buoyancy 
frequencies equalled 1.3-1.5 sec-*. 
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Internal waves were excited in the stratified layer by means of uniform horizontal 
motion of a sphere 3.8 cm in diameter in the uniform bottom layer of the liquid (the veloci- 
ties ranged from 1 to 6 cm/sec). 

The motion of the source outside the stratified layer (or partially submerged in it) 

made it possible to excite efficiently the zeroth-order mode [6]. In this case the entire 
layer, as a whole, undergoes wave-like motion and the phase patterns in any horizontal planes 
are identical. The integral phase pattern, obtained with vertical transillumination of all 
layers of the liquid, will correspond to the real pattern of the lines of constant phase. 

The phase patterns of the wave disturbances were visualized by the dark-field method 
using an IAB-451 shadowapparatus. A flat mirror, positioned at an angle of 45 ~ to the ver- 
tical, was employed for vertical propagation of the light beam. The horizontal light beam 
from the illuminating part of the shadow apparatus passed, after being reflected from the 
flat mirror, through an optical window in the bottom of the basin, the layer of working 
liquid, and once again through an optical window, and after being reflected from a flat mir- 
ror at the top once again became horizontal and entered the receiving part of the shadow 
apparatus. The placement of the optical window at the top was determined by the need to 
eliminate random surface wave disturbances. To this end the bottom surface of the window 
was placed flush against the surface of the water. The optical windows were 20 cm in diam- 
eter. This dimension determined the region of simultaneous visualization. To reconstruct 
the complete wave pattern behind the sphere at distances of up to 15 units (in our case 
approximately 60 cm) it was necessary to record separate fragments of the wave pattern on 
film for each pass successively. The complete pattern was then reconstructed from separate, 
enlarged images from the negatives. In making the photographs the lines of zero gradient 
of the optical path (in the transilluminated layer of the liquid) along the direction of 
motion of the sphere (x axis) were recorded. These lines virtually coincide with the lines 
passing along the crests and troughs of the phase surface. For monitoring purposes the lines 
of zero gradient along the perpendicular direction (along the y axis) were also recorded. 
Within the limits of error of the measurements both lines coincide in the far zone. 

Theoretical analysis established that the phase pattern of the internal waves in a 
stratified layer for the zeroth mode is structurally virtually identical to the phase pat- 
tern of surface ship waves. In both cases the wave disturbance in the wake behind the 
source consists of a continuous spectrum of plane waves, which has a long-wavelength limit. 
The direction of the wave vector of the wave with the minimum wave number coincides with the 
velocity vector of the source, and as the wave number increases the angle between these vec- 
tors increases and approaches 7/2. Excitation of one or another part of the spectrum is 

Fig. 4 
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determined by the ratio of the maximum wavelength and the size of the source. The dimen- 
sions of the laboratory tank precluded the use of large sources, so that the idea of changing 
the effective size of the source by submerging a small sphere (3.8 cm in diameter) at differ- 
ent depths under the stratified layer (as well as above it) was checked first. To this end 
the dependence of the phase pattern of the internal waves, arising with horizontal motion of 
a small sphere with fixed velocity, on the depth of submersion was studied. 

Figure 1 shows a photograph of the phase pattern for motion of a small sphere with a 
velocity of 2.6 cm/sec at a depth of 5 cm (from the bottom boundary of the stratified layer 
up to the center of the sphere). Like all patterns of a given series, this fragment was 
obtained at a distance of 40 cm behind the source with H = 5 cm and N = 1.5 sec-~. The 
phase pattern corresponds to the long-wavelength part of the spectrum of internal waves. 
The case of excitation of the short-wavelength part of Lhe spectrum is illustrated in Fig. 
2, when the source moves at zero depth. The distortions in the wake are caused by a vortex 
street. The technological part for fastening one of the flat mirrors can be seen at the 
center of both photographs. The entire family of phase patterns of a given series is shown 
in Fig. 3. The rightmost line corresponds to a submersion depth of 5 cm, and each subse- 
quent line corresponds to a decrease in the depth by 1 cm. The obtained pattern of effi- 
ciency of excitation of different sections of the spectrum on internal waves versus the sub- 
mersion depth of a source in the form of a sphere is not universal, and is determined by 
Fr = U/NH. As Fr is increased the value of the maximum wavelength in the given spectrum 
increases (the spectrum becomes broader) and to achieve efficient excitation of the long- 
wavelength part of the spectrum either the size of the source or its depth must be increased. 
The source size and depth indicated above made it possible to cover the working range Fr = 
0.25-1.0. 

The main part of the work consisted of finding a wedge (of the type of a wedge of sur- 
face Kelvin ship waves) for the zeroth mode in the stratified layer and measuring its half- 
angle as a function of Fr. To this end, the patterns of lines of crests and troughs were 
photographed for fixed values of Fr with two passes of the source (with different submer- 
sion depths). For one pass the pattern of wave disturbances of the long-wavelength part of 
the spectrum was reconstructed and the short-wavelength part of the spectrum was reconstruc- 
ted with another pass. Then they were combined and the complete pattern of internal waves 
in the stratified layer was obtained. The typical complete pattern of lines of crests and 
troughs for Fr = 0.385 is presented in Fig. 4. The broken lines show the boundaries of the 
wedge; the half-angle of the wedge in this case equals 7 • 1 ~ The configurations of crests 
and troughs in the far zone, where the finiteness of the source no longer has any effect, 
have turning points on the boundary of the wedge. To increase the accuracy of the measure- 
ment of the half-angles of the wedge an even larger number of turning points in the far zone 
must be recorded, and this requires a large laboratory basin. All experimental values 
obtained for the half-angles e of the wedge are plotted on graphs of e versus the inverse 
internal Froude number (i/Fr) in Fig. 5 as separate points (the line is analogous to the 
theoretical curve [5]). One can see that the experimental results agree well with the 

results of the linear theory. 

The theoretical and experimental studies performed showed that the phase structure of 
the internal waves in a stratified layer for the zeroth mode is analogous to the phase pat- 
tern of surface Kelvin ship waves. In addition, the difference in the dispersion relations 
leads only to a difference in the dependence of the angle e on the conditions of motion of 
the source. In the case of surface ship waves on deep water the half-angle of the wedge 
e w= arcsin (I/3) does not depend on the velocity of the source, while for internal ship 



waves in a stratified layer it depends on Fr: as Fr + 0 it approaches zero, while as Fr § 

it approaches 8 w. 

An even smaller difference is observed in the behavior of waves at the boundary of the 
wedge itself. The crests at the boundary of the wedge of surface ship waves make an angle 
of ~w=arctan~ with the x axis. In the case of internal ship waves as Fr + ~ it 
approaches ~ w, and as Fr decreases it slowly grows and approaches 60 ~ . Figure 6 shows the 
theoretical dependence of the slope angle of the tangent at the turning point of the line of 
constant phase with respect to the x axis on i/Fr. 

For small values of Fr the experimentally observed lines of constant phase are practi- 
cally parallel straight lines. In addition, they pass outside the boundary of the wave zone, 
determined by the value of 8 (8 + 0). 

We thank A. T. Onufriev for a discussion of the results obtained. 
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SOME CLASSES OF IZ~O-DIMENSIONAL 

VORTEX FLOWS OF AN IDEAL FLUID 

O. V. Kaptsov L~C 532.5+517.958 

There are relatively few known exact steady solutions of the two-dimensional Euler equa- 
tions [1-3]. This is in part explained by the fact that the symmetry group of these equa- 
tions is low [4]. But progress achieved in the study of nonlinear wave equations [5, 6] can 
be partially carried over to the study of elliptic problems. The purpose of the present 
paper is to obtain solutions of the equation for the stream function and to analyze these 
solutions. The solutions found here describe motion of the source type in a rotating fluid, 
periodic flow between two walls, motion in a rectangular cylinder, and others. 

i. The stream function ~ for the two-dimensional steady flow of an ideal fluid satis- 
fies the equation 

ar y )=  ~, (i. 1) 

w h e r e  t h e  v o r t i c i t y  e i s  a f u n c t i o n  o f  ~.  For  c e r t a i n  forms  o f  t h e  r i g h t  hand  s i d e  ( 1 . 1 )  
can  be  s o l v e d  u s i n g  a m o d i f i e d  s e p a r a t i o n  o f  v a r i a b l e s  method  and t h e  B e k l u n d  t r a n s f o r m a t i o n  
[6]. 

We assume that the vorticity is given by m(~) = ~ sin ~(e = • We look for a solu- 
tion of (i.I) in the form [5] ~(x, y) = 4arctan(f)x)g(y)), where the functions f and g satisfy 
the ordinary differential equations 

I '2 = nl 4 -5 ,np + k, g'~ = k ~  + (~ - -  m ) g  = + n (1.2)  
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